SiC Ceramic Tray for Wafer Carrier with High-Temperature Resistance​​

Short Description:

Silicon carbide (SiC) ceramic trays are made from ultra-high-purity SiC powder (>99.1%) sintered at 2450°C, featuring a density of 3.10g/cm³, high-temperature resistance up to 1800°C, and thermal conductivity of 250-300W/m·K. They excel in semiconductor MOCVD and ICP etching processes as wafer carriers, leveraging low thermal expansion (4×10⁻⁶/K) for stability under high temperatures, eliminating contamination risks inherent in traditional graphite carriers. Standard diameters reach 600mm, with options for vacuum suction and custom grooves. Precision machining ensures flatness deviations <0.01mm, enhancing GaN film uniformity and LED chip yield.


Features

​​Silicon Carbide Ceramic Tray (SiC Tray)​​

A high-performance ceramic component based on silicon carbide (SiC) material, engineered for advanced industrial applications such as semiconductor manufacturing and LED production. Its core functions include serving as a wafer carrier, etching process platform, or high-temperature process support, leveraging exceptional thermal conductivity, high-temperature resistance, and chemical stability to ensure process uniformity and product yield.

Key Features​​

1. Thermal Performance​​

  • ​​High Thermal Conductivity​​: 140–300 W/m·K, significantly surpassing traditional graphite (85 W/m·K), enabling rapid heat dissipation and reduced thermal stress.
  • ​​Low Thermal Expansion Coefficient​​: 4.0×10⁻⁶/℃ (25–1000℃), closely matching silicon (2.6×10⁻⁶/℃), minimizing thermal deformation risks.

2. ​​Mechanical Properties​​

  • ​​High Strength​​: Flexural strength ≥320 MPa (20℃), resistant to compression and impact.
  • ​​High Hardness​​: Mohs hardness 9.5, second only to diamond, offering superior wear resistance.

3. Chemical Stability​​

  • ​​Corrosion Resistance​​: Resistant to strong acids (e.g., HF, H₂SO₄), suitable for etching process environments.
  • ​​Non-Magnetic​​: Intrinsic magnetic susceptibility <1×10⁻⁶ emu/g, avoiding interference with precision instruments.

4. Extreme Environment Tolerance​​

  • ​​High-Temperature Durability​​: Long-term operational temperature up to 1600–1900℃; short-term resistance up to 2200℃ (oxygen-free environment).
  • ​​Thermal Shock Resistance​​: Withstands abrupt temperature changes (ΔT >1000℃) without cracking.

https://www.xkh-semitech.com/sic-ceramic-tray-for-wafer-carrier-with-high-temperature-resistance%e2%80%8b%e2%80%8b-product/

Applications

​​Application Field​​

​​Specific Scenarios​​

​​Technical Value​​

​​Semiconductor Manufacturing​​

Wafer etching (ICP), thin-film deposition (MOCVD), CMP polishing

High thermal conductivity ensures uniform temperature fields; low thermal expansion minimizes wafer warpage.

​​LED Production​​

Epitaxial growth (e.g., GaN), wafer dicing, packaging

Suppresses multi-type defects, enhancing LED luminous efficiency and lifespan.

​​Photovoltaic Industry​​

Silicon wafer sintering furnaces, PECVD equipment supports

High-temperature and thermal shock resistance extend equipment lifespan.

​​Laser & Optics​​

High-power laser cooling substrates, optical system supports

High thermal conductivity enables rapid heat dissipation, stabilizing optical components.

​​Analytical Instruments​​

TGA/DSC sample holders

Low heat capacity and fast thermal response improve measurement accuracy.

Produc Advantages​​

  1. Comprehensive Performance: Thermal conductivity, strength, and corrosion resistance far exceed alumina and silicon nitride ceramics, meeting extreme operational demands.
  2. ​​Lightweight Design​​: Density of 3.1–3.2 g/cm³ (40% of steel), reducing inertial load and enhancing motion precision.
  3. ​​Longevity & Reliability​​: Service life exceeds 5 years at 1600℃, reducing downtime and lowering operational costs by 30%.
  4. ​​Customization​​: Supports complex geometries (e.g., porous suction cups, multi-layer trays) with flatness error <15 μm for precision applications.

Technical Specifications​

​​Parameter Category​​

​​Indicator​​

​​Physical Properties​​

Density

≥3.10 g/cm³

Flexural Strength (20℃)

320–410 MPa

Thermal Conductivity (20℃)

140–300 W/(m·K)

Thermal Expansion Coefficient (25–1000℃)

4.0×10⁻⁶/℃

​​Chemical Properties​​

Acid Resistance (HF/H₂SO₄)

No corrosion after 24h immersion

​​Machining Precision​​

Flatness

≤15 μm (300×300 mm)

Surface Roughness (Ra)

≤0.4 μm

XKH's Services

XKH provides comprehensive industrial solutions spanning custom development, precision machining, and rigorous quality control. For ​​custom development​​, it offers high-purity (>99.999%) and porous (30–50% porosity) material solutions, paired with 3D modeling and simulation to optimize complex geometries for applications like semiconductors and aerospace. ​​Precision machining​​ follows a streamlined process: powder processing → isostatic/dry pressing → 2200°C sintering → CNC/diamond grinding → inspection, ensuring nanometer-level polishing and ±0.01 mm dimensional tolerance. ​​Quality control​​ includes full-process testing (XRD composition, SEM microstructure, 3-point bending) and technical support (process optimization, 24/7 consultation, 48-hour sample delivery), delivering reliable, high-performance components for advanced industrial needs.

https://www.xkh-semitech.com/sic-ceramic-tray-for-wafer-carrier-with-high-temperature-resistance%e2%80%8b%e2%80%8b-product/

Frequently Asked Questions (FAQ)

 1. Q: What industries use silicon carbide ceramic trays?​​

    A: Widely used in ​​semiconductor manufacturing​​ (wafer handling), ​​solar energy​​ (PECVD processes), ​​medical equipment​​ (MRI components), and ​​aerospace​​ (high-temperature parts) due to their extreme heat resistance and chemical stability.

2. Q: How does silicon carbide outperform quartz/glass trays?​​

    A: Higher ​​thermal shock resistance​​ (up to 1800°C vs. quartz’s 1100°C), ​​zero magnetic interference​​, and ​​longer lifespan​​ (5+ years vs. quartz’s 6-12 months).

3. Q: Can silicon carbide trays handle acidic environments?​​

    A: Yes. Resistant to ​​HF, H2SO4, and NaOH​​ with <0.01mm corrosion/year, making them ideal for chemical etching and wafer cleaning.

4. Q: Are silicon carbide trays compatible with automation?​​

    A: Yes. Designed for ​​vacuum pickup​​ and robotic handling, with surface flatness <0.01mm to prevent particle contamination in automated fabs.

5. Q: What’s the cost comparison vs. traditional materials?​​

    A: Higher upfront cost (3-5x quartz) but ​​30-50% lower TCO​​ due to extended lifespan, reduced downtime, and energy savings from superior thermal conductivity.


  • Previous:
  • Next:

  • Write your message here and send it to us